
HDF5: Initial Ideas for
Performance Tuning

 John Shalf
(and Shane, Ruth, and Quincey)

HDF Worshop
January 20, 2009

1

Options for Additional Info
on Wednesday

•  Ruth and Quincey: Any HDF5 tutorial you
want

•  Katie : Lustre Striping and More detail on
performance tuning for Lustre

•  John : HDF5 for native speakers of NetCDF
and HDF4

•  Andrew: Lustre Monitoring FrameworkDavid
Knaak: MPI-IO performance tuning for Cray

•  Rob: More ROMIO and HDF5 tuning
•  David & Noel: IPM profiling

2

Purpose of Workshop

•  Need to define action plan to tune HDF5
performance
–  Learn how HDF5 is being used by current

applications
–  Understand where you are experiencing

performance problems given use cases
–  Understand root cause of performance problems
–  Prioritize plan to fix problems

•  Please provide your personal list of
problems that you would like “fixed”
–  Feel free to do some real-time editing of your ppt

3

Application I/O Kernels to Measure Progress
(Cannot improve what you don’t measure)
•  IOR
•  FLASH I/O
•  Chombo HDF5
•  Vorpal / 3DIO
•  NetCDF4 tests (IPCC4, Randall Code)
•  Cactus HDF5 Bench
•  S3D
•  What else?

–  Work together with other procurements to collect
tests to get good coverage

4

Strawman Action Plan

•  Strawman Development Plan to
improve HDF5 integration with
NERSC platform
– Based on NERSC apps experience
– Not comprehensive

•  does not include your experience/requirements
•  Very NERSC-platform specific

•  Please help us make this more
responsive to your needs

5

A Few Performance Principles
(some assumptions)

•  Small writes are bad (aggregate to >1MB operations)
•  Use wide striping on Lustre for parallel I/O
•  Choose #stripes to be multiple of #clients

–  Best to set striping before writing to file

•  Use transaction sizes equal to stripe size
•  Align writes to stripe boundaries

–  Even if writes to file are sparse
•  2-phase I/O to fix alignment issues

–  # I/O clients equal to #OSTs assigned
–  Reorganize I/O so that it is always aligned to OSTs (e.g. Data

organized so Client #1 always handles transactions for same
OST)

6

Baseline Lustre Integration
•  Issue: HDF5 has no direct access to Lustre tunable

parameters
–  Stripe width, number of stripes, stripe offsets

•  Strategy: expose lustre tuning interfaces via H5P
interface
–  HDF5: has H5P interface for uniform access tunable

parameters
–  Lustre: has lustre_user.h that defines lustre-specific ioctls() to

introspect and modify tunable parameters

•  Benefits: first step to tuning HDF for Lustre
–  Enable user I/O libraries to introspect and manipulate HDF

interfaces and Lustre to tune for performance
–  Enable HDF5 to auto-tune performance tunables based on

Lustre parameters
–  Autotuning

7

Ergonomic issues: How do we
expose tuning capabilities?

•  Use Lustre-specific Virtual File Driver
–  Automatically chooses good values for tunable

params without user intervention
•  Define Lustre-specific behavior in mpi-

posix and mpi-io VFDs (#ifdef)
–  User code uses H5P interface to query and set

Lustre parameters (and any HDF5 tunable
parameters to match)

–  Use new H5P interface to request auto-tuning of
parameters

•  Depend on MPI-IO hints?

8

Lustre File Striping
•  Issue: Users usually forget to stripe file properly for

parallel I/O
–  Best performance if striping is an even multiple of number of

client processors
–  Correct striping choice usually indicated by how many clients

open same file
–  New Lustre 1.6 striping behavior will use same OST twice in

striping (need to nail down independent stripes)

•  Strategy: Use Lustre-specific H5P interfaces to set
striping
–  Set striping at file open
–  Have lustre-specific VFD automatically choose good striping

based on number of clients
–  Have user request auto-tuning through H5P “auto-tuning”

API call

9

HDF5 Object Alignment

•  Issue: Lustre hates unaligned data
–  HDF5 inserts various-sized data objects into file to conserve

space by default
–  Lustre performs poorly for unaligned writes

•  Strategy: Use Lustre-specific ioctls() to set correct
HDF5 tunable parameters for alignment
–  Make HDF5 prefer stripe-sized objects
–  HDF5 H5P_setalign() tunable parameter allows objects to

automatically be aligned to Lustre stripe boundaries
–  Lustre ioctls() enable HDF5 to find optimal alignment for

objects (stripe boundaries)

•  Benefits:
–  Automatically set optimal alignment for HDF5 objects

10

I/O Performance Sensitivity
to Transfer Size

Transfer Size

2GB File Size, 80 Processors, 40 OSTs

G
B/

Se
c

Good performance if
transaction is even multiple

of stripe size

11

I/O Performance Sensitivity
to Transfer Size

Transfer Size

2GB File Size, 80 Processors 40 OSTs: Offset file start by 64k

G
B/

Se
c
 Performance falls dramatically

if you offset start of file by small
increment (64k)

12

Streaming Unaligned Accesses
(not to pick on Lustre… GPFS suffers too)

Effect of Block Alignment on GPFS Performance (each blocksize)

0

20

40

60

80

100

120

140

160

180

200

128 256 512 1024 2048 4096 8192 16384 32768

Block Size (bytes)

B
W

 M
b

y
te

s/
se

c

maxbw

minbw

aligned bw

Minbw is really

Unaligned bandwidth

13

HDF5 Object Alignment

•  Issue: Lustre hates unaligned data
–  HDF5 inserts various-sized data objects into file to conserve

space by default
–  Lustre performs poorly for unaligned writes

•  Strategy: Use Lustre-specific ioctls() to set correct
HDF5 tunable parameters for alignment
–  Make HDF5 prefer stripe-sized objects
–  HDF5 H5P_setalign() tunable parameter allows objects to

automatically be aligned to Lustre stripe boundaries
–  Lustre ioctls() enable HDF5 to find optimal alignment for

objects (auto-tune for stripe boundaries)

•  Benefits:
–  Automatically set optimal alignment for HDF5 objects

14

HDF5 Metadata and Index
block Tuning

•  Issue: HDF5 hierarchical indices and metadata
blocks
–  HDF5 uses hierarchical indexing scheme and compact

metadata to conserve space by default
–  High-bandwidth I/O systems perform badly for small

transactions (metadata cache helps, but physical layout can
also be modified to favor aggregation of indices)

•  Strategy: Lustre introspection to set
–  Use Lustre ioctls() to find stripe size and stripe boundaries
–  Set HDF5 tunable parameter for size of indexing blocks

make it equal to Lustre stripe size
–  Also set HDF5 tunable for metadata cache size to

accommodate caching that is multiple of stripe size

15

HDF5 Index Blocks
(B-tree indices)

16

HDF5 Index Blocks

Flattened Represnetation

B-Tree index objects distributed throughout file

• Not-multiples of stripe-size

• Not stripe-aligned

Target larger (1MB sized)

Pad blocks to align them to stripe boundaries

17

HDF5 Metadata and Index
block Tuning

•  Issue: HDF5 hierarchical indices and metadata
blocks
–  HDF5 uses hierarchical indexing scheme and compact

metadata to conserve space by default
–  High-bandwidth I/O systems perform badly for small

transactions (metadata cache helps, but physical layout can
also be modified to favor aggregation of indices)

•  Strategy: Lustre introspection to set
–  Use Lustre ioctls() to find stripe size and stripe boundaries
–  Set HDF5 tunable parameter for size of indexing blocks

make it equal to Lustre stripe size
–  Also set HDF5 tunable for metadata cache size to

accommodate caching that is multiple of stripe size

18

Other HDF5 Metdata Optimizations
•  Issue: When HDF5 reads parallel file makes

redundant requests for same metadata block at each
client

•  Strategy: Read metadata from master and broadcast
to clients

•  Issue: Processor “0” handles metadata
–  Can create load-imbalance (Amdahl’s law hurts)

•  Strategy: Use POSIX async (or some other async)
method to hide metadata operations
–  POSIX async I/O interface
–  Dedicated “metadata” server process

19

Parallel I/O: Strided Data Access

•  Issue: Parallel I/O to shared file requires fine-grained
strided data access patterns (undo domain decomp)
–  perform poorly due to lock manager and small transaction

sizes
–  HDF5 not passing sufficient information to lower layers of I/O

stack (MPI-IO or filesystem tuning APIs)

•  Strategy: Describe intended pattern using MPI-IO
hints or filesystem-specific hints
–  Already plenty of code in HDF5 to use GPFS hints interfaces

and data structures
–  How do we provide such detailed hints to Lustre?
–  Can we provide better hints to MPI-IO in the MPI-IO VFD

20

3D (reversing the domain decomp)

21

3D (reversing the decomp)

Logical

Physical

22

3D (stripe alignment issues)

720 kbytes
 720 kbytes

Logical

Physical
 1024 Kbytes (Lustre Stripe Size 1MB)

Writes not aligned

to block boundaries

23

Parallel I/O: Strided Data Access

•  Issue: Parallel I/O to shared file requires fine-grained
strided data access patterns (undo domain decomp)
–  perform poorly due to lock manager and small transaction

sizes
–  HDF5 not passing sufficient information to lower layers of I/O

stack (MPI-IO or filesystem tuning APIs)

•  Strategy: Describe intended pattern using MPI-IO
hints or filesystem-specific hints
–  Already plenty of code in HDF5 to use GPFS hints interfaces

and data structures
–  How do we provide such detailed hints to Lustre?
–  Can we provide better hints to MPI-IO in the MPI-IO VFD

24

3D (stripe alignment issues)

720 kbytes
 720 kbytes

Logical

Physical
 1024 Kbytes (Lustre Stripe Size 1MB)

Writes not aligned

to block boundaries

25

Amdahl’s Law Hurts
(aggregate small metadata operations)

DSL Speed

HPC Speed

26

Common Physical Layouts
For Parallel I/O

•  One File Per Process
–  Terrible for HPSS!
–  Difficult to manage

•  Parallel I/O into a single file
–  Raw MPI-IO
–  pHDF5 pNetCDF

•  Chunking into a single file
–  Saves cost of reorganizing data
–  Depend on API to hide physical layout
–  (eg. expose user to logically contiguous array even though it is

stored physically as domain-decomposed chunks)

27

HDF5 Chunking

•  Issue: Performance problems with non-uniform
chunking
–  Fully populated HDF chunks go to disk in a single write
–  Partially populated chunks are written using sequence of

small/strided writes

•  Strategy: Write image of partially populated chunk in-
memory, then commit to disk
–  Initial experiments by Shan show some performance

benefits
–  Still an issue for non-uniform chunking (defining non-uniform

chunk sizes)
–  Not all domain decompositions are regular (what to do?)

28

HDF5 Chunking2 (2-phase I/O)
•  Issue: Chunking oriented towards creating contiguous

objects based on the application’s domain decomposition
–  Chunksize == local subdomain size
–  However, Lustre experience indicates preference for chunks that

are stripe-aligned and stripe-sized

•  Strategy: Two phase I/O to subset of writers
–  Define subset of clients as I/O aggregators (ROMIO)
–  Reorganize data via MPI messages to I/O servers from other

clients to be stripe-aligned (and clients always hit same OST)

•  Options
–  Make it work correctly in MPI-IO?
–  Implement it ourselves in MPI-POSIX VFD

•  Server-directed I/O (PANDA) approach

–  Doing it in user-space is really hard

29

Other Stuff

•  HDF5 Profiling layer
– Quincey: history comparisons to see if

property change had an effect on
performance

•  HDF5 restricted API
•  Auto-tuning
•  Going straight from description of

datamodel (XML perhaps) to veneer API

30

We Want Your Input!

•  This is not the final action plan
– Just initial straw-man example of what we

can target
– We want your input
– Action plan will change to incorporate your

ideas, use-cases and experience

•  Please tell us what your priorities and
performance pain-points are

31

